## Number System Manual for Students

| Decimal <br> Number | Octal <br> Number | Hexadecimal <br> Number | Binary <br> Number <br> Representation |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 01 |
| 3 | 3 | 3 | 11 |
| 4 | 4 | 4 | 100 |
| 5 | 5 | 5 | 101 |
| 6 | 6 | 6 | 110 |
| 7 | 7 | 7 | 111 |
| 8 | 10 | 8 | 1000 |
| 9 | 11 | 9 | 1001 |
| 10 | 12 | A | 1010 |
| 11 | 13 | B | 1011 |
| 12 | 14 | C | 1100 |
| 13 | 15 | D | 1101 |
| 14 | 16 | E | 1110 |
| 15 | 17 | F | 1111 |

(Ravi K. Walia)
Assistant Professor \& Incharge
Computer \& Instrumentation Centre
Dr. Y. S. Parmar University of Horticulture \& Forestry, Nauni Solan INDIA (HP)

## PREFACE

This document has been prepared for students at Dr. Y. S. Parmar University of Horticulture \& Forestry, Nauni, Solan (HP) India. Most of the introductory courses in computer science and information technology include topic on number system and students face problems in working with number system.

The technique to represent and work with numbers is called number system. Decimal number system is the most common number system, other popular number systems include binary number system, octal number system and hexadecimal number system. This manual cover different number systems, conversion of number from one representation to other and mathematical computation using different numbers system as well as 1 's and 2's complement notation for binary number. The best way to absorb the material is to try to solve different problems.

## Decimal Numbers

Base : 10
Digits used : $0,1,2,3,4,5,6,7,8,9$
Each position represents a specific power of the base 10

In the decimal number system, there are ten possible values that can appear in each digit position, and so there are ten numerals required to represent the quantity in each digit position. The decimal numerals are the familiar zero through nine ( $0,1,2,3,4$, $5,6,7,8,9$ ). When we write decimal (base 10) numbers, we use a positional notation system. Each digit is multiplied by an appropriate power of 10 depending on its position in the number: (from decimal point to the left we start with power of 10 as $0,1,2,3$ (i.e. $10^{0}, 10^{1}, 10^{2}, 10^{3}$ ) and so on and from decimal point to right we start with power of 10 as $-1,-2,-3$ (ie. $10^{-1}, 10^{-2}, 10^{-3}$ ) and so on

## For example:

$$
\begin{aligned}
& 843=8 \times 10^{2}+4 \times 10^{1}+3 \times 10^{0}=8 \times 100+4 \times 10+3 \times 1=800+40+3=843 \\
& .25=2 \times 10^{-1}+5 \times 10^{-2}=2 / 10+5 / 100=.2+.05=.25
\end{aligned}
$$

In a positional notation system, the number base is called the radix. Thus, the base ten system that we normally use has a radix of 10 . The term radix and base can be used interchangeably. When writing numbers in a radix other than ten, or where the radix isn't clear from the context, it is customary to specify the radix using a subscript.

## Binary Numbers

Base :2
Digits used : 0, 1
Each position represents a specific power of the base 2

The binary number system is also a positional notation numbering system with base 2. Each digit position in a binary number represents a power of two.

## Conversion from Binary to Decimal number:

Each binary digit is multiplied by an appropriate power of 2 based on the position in the number: (from binary point to the left we start with power of 2 as $0,1,2,3$ and so on and from decimal point to right we start with power of 2 as $-1,-2,-3$ and so on)

For example:

$$
\begin{aligned}
& 101101_{2}=1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =1 \times 32+0 \times 16+1 \times 8+1 \times 4+0 \times 2+1 \times 1 \\
& =32+8+4+1=45 \\
& .1101_{2}=1 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4} \\
& = \\
& =1 / 2+1 / 4+0 / 8+1 / 16=.5+.25+.0625=.8125
\end{aligned}
$$

$101101.1101_{2}=45.8125$

## Octal Numbers

Base : 8
Digits used : $0,1,2,3,4,5,6,7$
Each position represents a specific power of the base 8
The octal number system is also a positional notation numbering system with base 8. Each digit position in octal number represents a power of 8 .

## Conversion from Octal to Decimal number:

Each octal digit is multiplied by an appropriate power of 8 based on the position in the number: (from octal point to the left we start with power of 8 as $0,1,2,3$ and so on and from octal point to right we start with power of 8 as $-1,-2,-3$ and so on)

For example:

$$
\begin{aligned}
2305_{8} & =2 \times 8^{3}+3 \times 8^{2}+0 \times 8^{1}+5 \times 8^{0} \\
& =2 \times 512+3 \times 64+0 \times 8+5 \times 1 \\
& =1024+192+0+5=1221 \\
.423_{8} & =4 \times 8^{-1}+2 \times 8^{-2}+3 \times 8^{-3} \\
& =4 / 8+2 / 64+3 / 512 \\
& =.5+.03125+.005859375=.537109375
\end{aligned}
$$

| Decimal <br> Number | Binary <br> Number <br> Representation | Explanation <br> Binary Number Representation |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $2^{3}=8$ | $2^{2}=4$ | $2^{1}=2$ | $2^{0}=1$ |
| 0 | 0 |  |  |  |  | 0 |
| 1 | 1 |  |  |  |  | 1 |
| 2 | 01 |  |  |  | 1 | 0 |
| 3 | 11 | $2=2+1$ |  |  | 1 | 1 |
| 4 | 100 |  |  | 1 | 0 | 0 |
| 5 | 101 | $5=4+1$ |  | 1 | 0 | 1 |
| 6 | 110 | $6=4+2$ |  | 1 | 1 | 0 |
| 7 | 111 | $7=4+2+1$ |  | 1 | 1 | 1 |

## Hexadecimal Numbers

Base : 16
Digits used : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
(Where $\mathrm{A}=10, \mathrm{~B}=11, \mathrm{C}=12, \mathrm{D}=13, \mathrm{E}=14$ and $\mathrm{F}=15$ )
Each position represents a specific power of the base 16
The hexadecimal number system is also a positional notation numbering system with base 16. Each digit position in a binary number represents a power of 16 .

## Conversion from Hexadecimal to Decimal number:

Each hexadecimal digit is multiplied by an appropriate power of 16 based on the position in the number: (from hexadecimal point to the left we start with power of 16 as $0,1,2,3,4$ and so on and from hexadecimal point to right we start with power of 16 as $-1,-2,-3,-4$ and so on)

For example:

$$
\begin{aligned}
& 2 \mathrm{~B} 5_{16}=2 \times 16^{2}+\mathrm{B} \times 16^{1}+5 \times 16^{0} \\
&=2 \times 256+11 \times 16+5 \times 1 \\
&=512+176+5=693 \\
& .8 \mathrm{C}_{16}=8 \times 16^{-1}+\mathrm{C} \times 16^{-2} \\
&=8 / 16+12 / 256 \\
&= .5+.046875=.546875
\end{aligned}
$$

$$
2 \mathrm{~B} 5.8 \mathrm{C}_{16}=693.546875
$$

## Number System table

| Decimal Number | Octal Number | Hexadecimal Number | Binary <br> Number <br> Representation | Explanation <br> Binary Number Representation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $2^{3}=8$ | $2^{2}=4$ | $2^{1}=2$ | $2^{0}=1$ |
| 0 | 0 | 0 | 0 |  |  |  |  | 0 |
| 1 | 1 | 1 | 1 |  |  |  |  | 1 |
| 2 | 2 | 2 | 01 |  |  |  | 1 | 0 |
| 3 | 3 | 3 | 11 | $2=2+1$ |  |  | 1 | 1 |
| 4 | 4 | 4 | 100 |  |  | 1 | 0 | 0 |
| 5 | 5 | 5 | 101 | $5=4+1$ |  | 1 | 0 | 1 |
| 6 | 6 | 6 | 110 | $6=4+2$ |  | 1 | 1 | 0 |
| 7 | 7 | 7 | 111 | $7=4+2+1$ |  | 1 | 1 | 1 |
| 8 | 10 | 8 | 1000 | $8=8+0$ | 1 | 0 | 0 | 0 |
| 9 | 11 | 9 | 1001 | $9=8+1$ | 1 | 0 | 0 | 1 |
| 10 | 12 | A | 1010 | $10=8+2$ | 1 | 0 | 1 | 0 |
| 11 | 13 | B | 1011 | $11=8+2+1$ | 1 | 0 | 1 | 1 |
| 12 | 14 | C | 1100 | $12=8+4$ | 1 | 1 | 0 | 0 |
| 13 | 15 | D | 1101 | $13=8+4+1$ | 1 | 1 | 0 | 1 |
| 14 | 16 | E | 1110 | $14=8+4+2$ | 1 | 1 | 1 | 0 |
| 15 | 17 | F | 1111 | $15=8+4+2+1$ | 1 | 1 | 1 | 1 |

## Conversion of Binary, Octal \& Hexadecimal Numbers

## From Binary to Octal

Starting at the binary point and working left, separate the bits into groups of three and replace each group with the corresponding octal digit and similarly for binary fraction starting at binary point and working right, separate the bits into group of three and replace each group with the corresponding octal digit (add additional zeros to the left of integer portion or right of fraction portion if required)

$$
10001011.10101_{2}=010001011.101010=213.52_{8}
$$

## From Binary to Hexadecimal

Starting at the binary point and working left, separate the bits into groups of four and replace each group with the corresponding hexadecimal digit and similarly for binary fraction starting at binary point and working right, separate the bits into group of four and replace each group with the corresponding hexadecimal digit ( add additional zeros to the left of integer portion or right of fraction portion if required).
$10001011.110001_{2}=10001011.11000100=8 \mathrm{D} \cdot \mathrm{C} 4_{16}$

## From Octal to Binary

Replace each octal digit with the corresponding 3-bit binary string. $213.24_{8}=010001011.010100=10001011.010100_{2}$

## From Hexadecimal to Binary

Replace each hexadecimal digit with the corresponding 4-bit binary string.

$$
8 \text { B.A5 } 5_{16}=1000 \text { 1011. } 10100101=10001011.10100101_{2}
$$

## Conversion of Decimal Numbers

## From Decimal to Binary

## For Integer part conversion

Divide number by 2 ; keep track of remainder, repeat with dividend equal to quotient until zero; first remainder is binary LSB and last is MSB. e.g. to convert 139 to binary

| Dividend | Quotient | Remainder |  |
| :--- | :--- | :--- | :--- |
| $139 / 2$ | 69 | 1 | LSB |
| $69 / 2$ | 34 | 1 |  |
| $34 / 2$ | 17 | 0 |  |
| $17 / 2$ | 8 | 1 |  |
| $8 / 2$ | 4 | 0 |  |
| $4 / 2$ | 2 | 0 |  |
| $2 / 2$ | 1 | 0 |  |
| $1 / 2$ | 0 | 1 | MSB |

$139=10001011$

The conversion from decimal integers to any base-r system is same to the above example, except that division is done by $r$ instead of 2 .

## For Fraction part conversion

Multiply the fraction by two; keep track of integer part; repeat with multiplier equal to product fraction until the fraction part is zero; first integer is MSB , last is the LSB ( conversion may not be exact, a repeated fraction). The conversion from decimal fraction to any base-r system is similar except the multiplication is done by $r$ instead of 2 .

Convert (0.7854) 10 to binary.

| 0.7854 | Integer part |
| ---: | :--- |
| $\times 2$ |  |
| 1.5708 | 1 |
| 0.5708 |  |
| $\times 2$ |  |
| 1.1416 | 1 |
| 0.1416 |  |
| $\times 2$ |  |
| 0.2832 | 0 |
| 0.2832 |  |
| $\times 2$ |  |
| 0.5664 | 0 |

$0.7854=(0.1100)_{2}$

## From Decimal to Octal

## For Integer part conversion

Divide number by 8 ; keep track of remainder; repeat with dividend equal to quotient until zero; first remainder is binary LSB and last is MSB. e.g. to convert decimal 846 to octal

| Dividend | Quotient | Remainder |  |
| :--- | :--- | :--- | :--- |
| $846 / 8$ | 105 | 6 | LSB |
| $105 / 8$ | 13 | 1 |  |
| $13 / 8$ | 1 | 5 |  |
| $1 / 8$ | 0 | 1 | MSB |

$846=1516_{8}$

## For Fraction part conversion

Multiply the fraction by eight; keep track of integer part; repeat with multiplier equal to product fraction; first integer is MSB, last is the LSB; conversion may not be exact; a repeated fraction. Convert $(0.44140625)_{10}$ to octal.
$\begin{array}{l}$\cline { 2 - 4 } $\begin{array}{|r|l|}\hline 0.44140625 & \text { Integer part } \\ \times 8 & \\ \hline 3.53125 & 3\end{array} \\$\cline { 2 - 4 } <br> \hline 0.53125 <br> $\left.\times 8\end{array}\right)$

## From Decimal To Hexadecimal

## For Integer part conversion

Divide number by 16 ; keep track of remainder; repeat with dividend equal to quotient until zero; first remainder is binary LSB and last is MSB. e.g. to convert 2619 to Hexadecimal

| Dividend | Quotient | Remainder |
| :--- | :--- | :--- |
| $2619 / 16$ | 163 | 11 (Hexa B) LSB |
| $163 / 16$ | 10 | 3 |
| $10 / 16$ | 0 | 10 (in Hexa A) |
| $1 / 8$ | 0 | $1 \quad$ MSB |

$2619=$ A3B $_{16}$

## For Fraction part conversion

Multiply the fraction by sixteen; keep track of integer part; repeat with multiplier equal to product fraction; first integer is MSB, last is the LSB; conversion may not be exact; a repeated fraction. Convert ( 0.609375 ) to hexadecimal.

| 0.609375 | Integer part |
| ---: | :--- |
| $\times 16$ |  |
| 9.75 | 9 |
|  | 9.75 |
| $\times 16$ |  |
| 12.00 | 12 |
|  | (C in Hexa) LSB |

## Binary Number System

## Addition

$$
\begin{aligned}
& 0+0=1 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0 \text { plus a carry of } 1 \text { to next higher bit/column } \\
& 100111 \\
&+11011
\end{aligned}
$$

## Subtraction

$$
\begin{align*}
& 0-0=0 \\
& 0-1=1 \text { with borrow from the next higher digit/coulm } \\
& 1-0=1 \\
& 1-1=0 \\
& 10101 \\
& -01110 \\
& ---------- \\
& 00111
\end{align*}
$$

## Multiplication in Binary Number

|  |  | Multiplicand 1000 | Multiplier 1001 |
| :---: | :---: | :---: | :---: |
|  | 1000 |  |  |
|  | x 1001 |  |  |
|  | 1000 |  |  |
|  | 0000 |  |  |
|  | 0000 |  |  |
|  | 1000 |  |  |
| Product | 1001000 |  |  |

## Division in Binary Number

## Divisor 1000 Dividend 1001010

1001 (Quotient)
1000 | 1001010
-1000

10
101
1010
-1000

10 Remainder

## Complements of Number:

There are two types of complements for a number of base (also called radix) $r$, called r's complement and (r-1)'s complement. For decimal numbers there are 10 's and 9's complement. For binary numbers there are 2 's and 1's complements

9's complement: The 9's complement is obtained by subtracting each digit of the number from 9 (the highest digit value).

9's complement of 256

$$
9999
$$

- 0 -2-5-6

9743

10's complement: Adding 1 in the 9's complement produces the 10 's complement.

10's complement of $0256=9743+1=9744$

## Binary Arithmetic

1's complement for a binary number is obtained by subtracting each binary digit of the number from the digit 1.

1's complement: The 1's complement is obtained by changing binary digit 0 to 1 and 1 to 0 . The 1 's complement of 1010 is 0101

Number is
1 's complement is

1010
0101

2's complement: 2's complement of binary number is obtained by adding 1 to 1's complement

Number is 1 's complement is 2 's complement is


0110

The 2's complement can also be obtained by not complementing the least significant zeros till the first 1 is encountered, this 1 is also not complemented. After this 1 the rest of all the bits are complemented on the left.

## Addition and Subtraction using 1's complement

For addition and subtraction, in 1's complement the negative number is represented in 1's complement notation and both numbers are added, if 1 bit is carried out of sign bit it is added to the result.

For addition and subtraction, in 2's complement the negative number is represented in 2's complement notation and both numbers are added, if 1 bit is carried out of sign bit it is discarded

For the purpose of all example assume register size is 8 bit (1 position for sign bit and 7 position for magnitude)

| Number | 1's complement representation | 2's complement representation |
| :--- | :--- | :--- |
| +5 | 00000101 | 00000101 |
| -5 | 11111010 | 11111011 |
| +25 | 00011001 | 00011001 |
| -25 | 11100110 | 11100111 |
| +30 | 00011110 | 00011110 |
| -30 | 11100001 | 11100010 |
| +55 | 00110111 | 00110111 |
| -55 | 11001000 | 11001001 |

## 1's Complements Notations

$25+35$

| Decimal | Carry | Sign | 1's complement notation |  |
| :--- | :--- | :--- | :--- | :--- |
| Number | bit | Bit |  |  |
| +25 |  | 0 | 0011001 |  |
| +30 |  | 0 | 0011110 |  |
| +55 |  | 0 | 0110111 |  |

25-30

| Decimal | Carry | Sign | 1's complement notation |  |
| :--- | :--- | :--- | :--- | :--- |
| Number | bit | Bit |  |  |
| +25 |  | 0 | 0011001 |  |
| -30 |  | 1 | 1100001 |  |
| -5 |  | 1 | 1111010 | Which is 1's complement of -5 |

$-25+30$

| Decimal <br> Number | Carry <br> bit | Sign <br> Bit | 1 's complement notation |  |
| :--- | :--- | :--- | :--- | :--- |
| -25 |  | 1 | 1100110 |  |
| +30 |  | 0 | 0011110 |  |
|  | 1 | 0 | 0000100 | Add carry bit |
|  |  |  | 1 |  |
| +5 |  | 0 | 0000101 |  |

-25-30

| Decimal | Carry <br> number | Sign <br> Bit | 1 's complement notation |  |
| :--- | :--- | :--- | :--- | :--- |
| -25 |  | 1 | 1100110 |  |
| -30 |  | 1 | 1100001 |  |
|  | 1 | 1 | 1000111 | Add carry bit |
| -55 |  | 1 | 1001000 | Which is 1 's complement of -55 |

## 2's Complements Notations

| $+25+30$ |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Decimal Carry Sign 2's complement notation <br> Number bit Bit  <br> +25  0 0011001 <br>     <br> +30  0 0011110 <br>     <br> +55  0 0110111 <br>     |  |  |  |  |  |  |  |

+25-30

| Decimal | Carry | Sign | 2's complement notation |  |
| :--- | :--- | :--- | :--- | :--- |
| Number | bit | Bit |  |  |
| +25 |  | 0 | 0011001 |  |
| -30 |  | 1 | 1100010 |  |
| -5 |  | 1 | 1111011 | Which is 2's complement of -5 |

$-25+30$

| Decimal <br> Number | Carry <br> bit | Sign <br> Bit | 2's complement notation |  |
| :--- | :--- | :--- | :--- | :--- |
| -25 |  | 1 | 1100111 |  |
| +30 |  | 0 | 0011110 |  |
|  | 1 | 0 | 0000101 | Discard the carry bit |
| +5 |  | 0 | 0000101 |  |

-25-30

| Decimal <br> Number | Carry <br> bit | Sign <br> Bit | 2's complement notation |  |
| :--- | :--- | :--- | :--- | :--- |
| -25 |  | 1 | 1100111 |  |
| -30 |  | 1 | 1100010 |  |
|  | 1 | 1 | 1001001 | Discard the carry bit |
| -55 |  | 1 | 1001001 | Which is 2's complement of -55 |

If the carry into the sign bit is not equal to the carry out of the sign bit then overflow must have occurred.

| Decimal | Carry | Sign | 2's complement notation |
| :--- | :--- | :--- | :--- |
| Number | bit | Bit |  |
| +65 |  | 0 | 1000001 |
| +75 |  | 0 | 1001011 |
| +140 |  | 1 | 0001100 |

The expected result is +140 but the binary sum is a negative number and is equal to -116 , which obviously is a wrong result. This has occurred because of overflow.

## Signed 2's is preferred over signed 1's notation

Signed 2's complement there is just one zero and there is no positive or negative zero.

## Data Representation

+0 in 2's Complement Notation: 00000000
-0 in 1's complement notation:
11111111
Add 1 for 2's complement:


Discard the Carry Out $1 \quad 00000000$
For signed 1 's complement representation in 8 bit register range is
$=\left(2^{7}-1\right)$ to $-\left(2^{7}-1\right)$
$=(128-1)$ to $-(128-1)$
$=127$ to -127

But, for signed 2's complement we can represent +127 to -128 .
The - 128 is represented in signed 2's complement notation as 10000000

